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ABSTRACT 

Random Forest is one of the widely used tree-based ensemble classification algorithms. 

Many aspects of building tree ensembles are introduced to reduce correlation among decision 

trees within the forest. Bootstrap is used in Random Forest to reduce bias decision tree and to 

decide splits in every decision tree. Classification by Ensembles from Random Partitions (CERP) 

is a different algorithm to create an ensemble. CERP randomly partitions the data instead of 

using bootstrap and creates multiple ensembles instead of one. A forest consists of several 

decision trees, an ensemble of trees. While Random Forest builds a forest, CERP builds an 

ensemble of forests. A base classifier in Random Forest uses an exhaustive search to find a split. 

On the other hand, the Generalized, Unbiased, Interaction Detection and Estimation (GUIDE) 

algorithm uses statistical hypothesis testing, which is faster than exhaustively search algorithms 

and is able to detect interaction using a statistical method. This thesis investigated tree-based 

ensemble classification algorithms that include the CERP, GUIDE, and Random Forest for 

genetic data. 
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CHAPTER 1  

BACKGROUND 

A microarray is a tool used to parallelly detect gene expression of thousands of genes. 

The microarray would contain gene chips which are microscope slides with known genes. The 

DNA within these gene chips act to detect gene expression. Humans in general contain at least 

46,831 genes. One individual or observation can produce 46,831 possible gene expressions or 

predictors (Saey 2018).  Microarray experiments generate a large number of features all of which 

are thousands to millions of genes but very few observations. Data sets having more features 

than observations is said to be high dimensional data. We used a prostate cancer microarray data 

set having 20 patients with 22284 probe sets (Best, Gillespie, Yi, et al. 2005). 

Microarray data are a challenge for classification. Having a large number of predictors 

means that logistic regression and many traditional regression algorithms can only use a subset 

of features to avoid problems such as multicollinearity (where the features are correlated among 

themselves arises). Tree-based ensemble algorithms may be better at handling large numbers of 

features. Random subspace method is a method that uses bootstrap, and each decision tree is 

built on a subset of features (Ho 1998).  

Traditional classification algorithms, especially parametric ones, tend to have strict 

assumptions. It is not feasible to assume normality or some kind of distribution with high 

dimensional data nor does it make sense; there is just not enough data to assume a distribution. 

Nonparametric classification algorithms may be more preferable. This type of algorithm require 

less assumptions and is more flexible with high dimensional data.  
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With logistic regression and many other regression algorithms, the process of selecting 

predictors is tedious and somewhat error prone. The Stepwise method for selecting predictors 

may have disadvantages in a regression model for classification (Flom and Cassell 2007). An 

alternative to Stepwise may be model averaging or tree-based ensemble algorithms (Flom and 

Cassell 2007). Tree-based algorithms can handle different types of predictors without 

introducing a selection bias. Categorical predictors in traditional regression models require 

dummy variables, in contrast with tree-based predictors do not require any transformation. 

Another challenge for high dimensional dataset is the “curse of dimensionality,” which is 

a problem that arises when a dataset has more features than cases (Trunk 1979). The more 

features a dataset has, the larger the volume of spaces, which requires more observations to have 

reliable results. As the features increases the volume of space between, these observations grow 

exponentially therefore requiring a large amount of observations. A problem in high dimensional 

data is that there are  more features than there are observations. The “curse of dimensionality” 

problem comes into play. A way to handle this “curse of dimensionality” problem is by using 

random subspace method (Ho 1998). 

The data included in this thesis are prostate cancer and myeloma cancer. Prostate cancer 

is the second most common cases of cancer for men; skin cancer is the most common. The 

prostate cancer data used in this paper is based on an experiment which is trying to help shed 

light on a rare and aggressive form of prostate cancer, androgen-independent prostate cancer 

(Best, Gillespie, Yi, et al. 2005). Prostate cancer is treated using androgen ablation therapy; the 

form of prostate cancer that recurs after therapy is called androgen-independent prostate cancer. 



 3 

 

It is rare for prostate cancer to spread away from prostate organ. Androgen-independent prostate 

cancer form of cancer rare because it spread toward other regions.  

Myeloma cancer is known as multiple myeloma, which is a form of cancer that affects 

white blood cell in bone marrow. This cancer causes growth of cancerous plasma cells within the 

bone marrow, which causes tumors and disrupts the production of red blood cell. This form of 

cancer is hard to detect because symptoms do not appear until the cancer has spread from bone 

marrow into the neighboring regions. 

The myeloma cancer data used in this thesis is based on an experiment by Tian E and et 

al (Tian and et al. 2003). The team used plasma cells from bone marrow of patients that were 

diagnosed with myeloma cancer, and also a control group for microarray profiling. The main 

purpose of their study was to study a specific gene that causes bone lytic lesion. Bone lytic lesion 

is the softening of bone due to a disease, in this case the disease is multiple myeloma.  Myeloma 

cancer that causes bone lytic lesion has a specific elevated gene known as dickkopf1. Myeloma 

cancer where bone lytic is not present does not exhibit elevation of dickkopf1 gene.  

 The results of this thesis may contribute in classifying high dimensional assay data. It  

may be a better alternative for classifying high-dimensional assay data than Random Forest or 

XGboost. The results of this thesis may further extend to high-dimensional datasets in a different 

application instead of high-dimensional assay data set. The results may be expected to give 

researchers new possible directions in research for tree-based ensemble classification algorithms 

for high dimensional data. With highly accurate model, the progress may help optimize and 

improve medical methods, which would lead to a better quality of life for patients.  
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CHAPTER 2  

STATISTICAL THEORY 

Random Forest Introduction to CART Decision Tree 

A tree can be either used for regression or classification. A decision tree starts with a root 

node which then splits into other nodes based on some split criteria. From the root node a 

decision tree can split into several nodes. The nodes that are split from the root node are called 

the child nodes, and the root node is the parent node of the child nodes. This split process repeats 

for the root node’s child nodes and continues on recursively for the child’s child nodes until 

certain criteria are met. For the purpose of this thesis, we will only discuss the binary decision 

tree that does classification. Classification is the process of deciding which subpopulation a 

given new observation belongs to. 

 

FIGURE 1. An example of a binary decision tree. All nonterminal nodes are represented as 
circles and terminal nodes are represented as rectangles. 
 Binary decision trees split into two child nodes by finding a split point within a feature. A 

split point means that when a node in the binary decision tree splits, it is based on a value of a 

chosen feature. This split point partitions the data into two partitions and can be seen as two sub 
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datasets. At the root node we have the entire data set, as the binary decision tree split, the root 

node will end up with two child nodes. The process of splitting into two child nodes from the 

root node will partition the original data set into two new partitions, each partitions represents a 

new separate datasets. The splitting process partitions the given dataset into two sub datasets. 

One child node will have one of two partitioned datasets and the other child node will have the 

other partitioned dataset. Taken together the two nodes represent the original dataset from the 

parent node. Terminal nodes are nodes that have no splits and no child nodes. These terminal 

nodes will belong to a class. Whatever the most prominent class within the partitioned sub 

dataset, represented by the terminal node, will be what the binary decision tree will classify. 

What if the dataset has more than two classes to classify? If the dataset has more than two 

classes, then the data partition is between one class and the rest of the other classes. 

 The node split process can be based on a criterion or several criteria. These split criteria 

are based on an algorithm. Every time a binary classification decision tree splits, the dataset is 

partitioned into two sub datasets of the previous node dataset. The partitions will be more 

homogeneous in terms of having more of the same class. The goal of the split criteria algorithm 

is to partition the data into two partitions representing subsets of data, with each subset having 

the majority of a particular class. The algorithm chosen to figure out the split criteria will 

determine the type of decision tree.  

 Gini impurity is a split criteria in Classification and Regression Tree (CART). The Gini 

impurity criteria is based on the data impurity. Data impurity measures the homogeneity of a 

dataset within a tree node. If the data set in a chosen node has only one class of observation, then 

the Gini impurity score will be zero. An example is a data set in a node that have an evenly 
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mixed observations of different classes. This example will have a higher Gini score compared to 

a dataset in a node that contain only observations belonging to one class. Gini impurity measures 

how homogeneous a dataset in a node is in regard to classification. Gini impurity uses criteria to 

determine what is the best feature. The feature’s value to split the dataset which represent child 

nodes splitting from the parent node. 

Classification and Regression Trees search exhaustively for every combination of 

features and possible values of features to figure out what is the best split. The best value to split 

means that the subsets of data are the most homogenous out of all other possible values for 

chosen feature. The Gini impurity is computed by adding all the probability 𝑝! of an item with 

label 𝑖  being chosen, times the probability of misclassifying item 1 −	𝑝!. The Gini impurity 

equation is 

𝐼(𝑝) =*𝑝!(1 − 𝑝!) =
"

!#$

1 −	*𝑝!%

"

, 

where 𝑗 is the total number of labels that an item can be classified as, 𝑝! is the proportion of 

items in a dataset with labeled as class 𝑖. An example of calculating Gini impurity with two class 

is shown below. 

After establishing how decision trees are created, the next step is describing in general 

how forest works. More specifically, how a collection of trees collectively works together to 

arrive at a consensus in classifying a given data. 
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FIGURE 2. This shows a Gini impurity score of 0. This means that this partition is fully 
homogeneous. There is no point to partition the data beyond this partition. 

 

 

FIGURE 3. This shows a Gini impurity score of 0.18. This means that this partition is 
mostly homogeneous. This means that one class, label 2, is overwhelmingly the majority 
class in this partition. 

 

 

FIGURE 4. This shows a Gini impurity score of 0.50. This means that this partition is not 
homogeneous.  This means that there may be a need to partition this data into sub 
partitions. 
   

label 1 0 𝑃(𝑙𝑎𝑏𝑒𝑙	1) =
1
10 , 𝑃(𝑙𝑎𝑏𝑒𝑙	2) =

10
10 

 
label 2 10 

𝐺𝑖𝑛𝑖 = 1 − 𝑃(𝑙𝑎𝑏𝑒𝑙	1)% − 𝑃(𝑙𝑎𝑏𝑒𝑙	2)% = 1 −
0%

10% −
10%

10% = 0 
 

label 1 1 𝑃(𝑙𝑎𝑏𝑒𝑙	1) =
1
10 , 𝑃(𝑙𝑎𝑏𝑒𝑙	2) =

9
10 

 
label 2 9 

𝐺𝑖𝑛𝑖 = 1 − 𝑃(𝑙𝑎𝑏𝑒𝑙	1)% − 𝑃(𝑙𝑎𝑏𝑒𝑙	2)% = 1 −
1%

10% −
9%

10% = 0.18 
 

label 1 5 
𝑃(𝑙𝑎𝑏𝑒𝑙	1) =

5
10 , 𝑃(𝑙𝑎𝑏𝑒𝑙	2) =

5
10 

 
label 2 5 

𝐺𝑖𝑛𝑖 = 1 − 𝑃(𝑙𝑎𝑏𝑒𝑙	1)% − 𝑃(𝑙𝑎𝑏𝑒𝑙	2)% = 1 −
5%

10% −
5%

10% = 0.5 
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Bootstrap Method 

The bootstrap method is a nonparametric statistical data driven method for approximating 

the sampling distribution that was introduced by Dr. Bradley Efron (Efron 1979). The data 

driven part is the resampling that bootstrap does. It resamples the original sample to get an 

approximate of the sampling distribution, which is then used to make statistical inferences. With 

bootstrap method, resampling is done with replacement. The algorithm for bootstrap method is 

the following: 

1. Choose the sample size for resampling sample. 

2. Choose the number of times to resample. 

3. For each resampled sample: 

 1. Resample with replacement with chosen sample size. 

 2. Calculate the statistic on that resample sample.  

4. Take all the calculated statistics from the resample samples and calculated the average. 

Standard error is also calculated and a confidence interval is built around the calculated 

averaged statistic. 

 The advantage of bootstrap is that it does not assume a given sample has a specific 

distribution. An example to highlight this advantage is when we need to infer the population 

mean from a sample. The one sample t-test is often used to do this, inferring the population mean 

with a confidence interval. The null hypothesis for the t-test will be the population mean is equal 

to some constant. We then find the t-value using 𝑡 = 	 &̅()!
* √,⁄  where �̅� is the sample mean, 𝜇. is the 
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population mean, 𝑠 is the sample standard deviation, and 𝑛 is the sample size. We can continue 

to go on how to build a confidence interval with one sample t-test, but this is a good place to stop 

and highlight why the bootstrap method is better than one-sample t-test. The t-test assumption 

about the sample distribution is restrictive, it assume that the sample distribution is standard 

normal (as seen in the t-value equation). If the population true distribution is log normal then the 

t-test assumption that the sample are standard normal does not make sense. This is where the 

bootstrap method is better. Using the bootstrap method, one can create the sample distribution 

through resampling, and from there infer the statistic and build the confidence interval. The 

bootstrap method would better approximate the true population distribution of log normal than 

the one sample t-test.  

 The bootstrap method is not without flaws. There are two major flaws to the bootstrap 

method. The first one is that bootstrap make a strong assumption toward what values the sample 

can have. Since it resample from the original sample, the values in the original sample are the 

only values that the sample distribution created by bootstrap method can have. Another flaw is 

that bootstrap method is dependent on the sample size, if the sample size is unusually small the 

bootstrap method will not work well. 

Bagging (Bootstrap Aggregation) 

Introduction to Bagging 

Bagging is also called bootstrap aggregation and was introduced by Dr. Leo Breiman in 

1994 to improve classification (Breiman 1994). The reason to use bagging is to reduce 

overfitting and to reduce bias. The algorithm for bagging is the following: 

1. Take a random sample of the original training set. 
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2. Train a classifier using the resampled sample.  

3. Repeat step 1 and step 2 for a fixed number of times.  

4. With a collection of classifiers created from step 3, one can now aggregate all 

predictions from each classifier and choose the class label that is predicted the most. 

This process is often called majority voting. Each prediction from a classifier is a vote 

and the majority vote win. 

In step 2 of the bagging algorithm the classifier in this thesis will be decision tree. For 

Step 4 of the bagging algorithm, often times to break a tie from majority voting, with two labels 

for classification, an odd number of classifiers are chosen. 

Introduction to Random Subspace 

 The random subspace method was proposed by Dr. Tin Kam Ho (Ho 1998). The method 

is an attempt to create an ensemble with classifiers having little to no correlation among each 

other. The main point of the random subspace method is each classifier within an ensemble has 

its own individual random sample of predictors. The motivation for the creation of this method is 

to have a perfect accuracy in training data sets and at the same time also have good accuracy for 

untrained data sets.   

Introduction to Random Forest 

Random Forest employ bagging and random subspace when building a forest which 

consists of CART decision trees (Breiman 2001). While bagging is used to reduce bias there are 

still problems with it. The random sample of training sets in the long run may look very similar 

and may not be sufficient to reduce correlation among similar classifiers. Random Forest solved 

this problem by using random subspace on top of bagging in order to make the decision tree 
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more heterogenous from each other. Let 𝑁 be the size of training data. Pseudo-code for the 

random forest, 

1. Take a random sample the training data with sample size 𝑁. 

2. Take a random sample of the predictors without replacement with sample size 𝑚, for 

example 𝑚 = A𝑝, where 𝑝 represents to total number of predictors in the training 

data.  

3. Create the first decision tree split using CART, partition the data via Gini impurity, 

for example. 

4. The observations that are not used to train because of bootstrap in step 1 are call “out-

of-bag” data.  

5. Step 1 to step 4 are steps to build decision trees. Repeat this step a number of times 

500 to 1000 or more to build a forest. 

Generalized, Unbiased, Interaction Detection and Estimation (GUIDE) 

Introduction to GUIDE’s Decision Tree 

 For the Random Forest ensemble, it may have a drawback: selection bias. Selection bias 

is when the tree is biased toward certain types of predictors to split when building a decision tree. 

Dr. Wei-Yin Loh’s findings have shown that CART is biased toward variables with more splits, 

this means the decision trees are often bigger and require more partitions of data (meaning more 

nodes in the decision tree); they are biased toward categorical variables (Loh 2010). On the same 

paper, Dr. Loh also shown that GUIDE trees do not have selection bias. Selection bias can be 

overcome with many observations. Unfortunately for genetic data and for many medical datasets, 
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it is generally not the case where there is a large amount of observations to overcome selection 

bias.   

GUIDE decision trees fixed this problem where all predictors have equal probabilities to 

be selected for tree split. What GUIDE does is to separate the process of finding the best split. 

GUIDE first select the predictor using two chi-square tests. The chi-square tests are used on main 

effects and interaction effects between pairs of predictors. From the chi-square tests a predictor is 

chosen. After a predictor is chosen, GUIDE chooses the best value for that predictor to split 

using quadratic discriminant analysis. GUIDE stops building decision trees by pruning, using 10-

folds cross-validation with 0.5 standard error cutoff as the default value. For a more detailed 

mathematical implementation interested readers are referred to, “Improving the precision of 

classification trees” by Dr Wei-Yin Loh (Loh 2009) which describes in detail two modified chi-

squared tests, one for main effects and one for interaction effects. The paper then goes into 

details of how a variable selection and split works based on continuous predictors and categorical 

predictors. 

Classification by Ensembles from Random Partitions (CERP) 

Introduction to CERP  

Classification by Ensembles from Random Partitions (CERP) is a classification method 

using random partitions by Dr. Ahn, Dr. Hojin Moon, and et al (Ahn, Moon, Fazzari, et al. 

2006). Random partitions here refer to the shuffling of predictors and then partitioning the 

predictors into disjoint subsets. For each partition a classifier is created. The number of 

classifiers is dictated by the number of partitions. How the number of partitions is chosen for this 

paper is through cross validation, the one with the best predicting accuracy from cross validation 



13 

is chosen. Majority vote is used for these classifiers for classification. Another way of seeing this 

is shuffling the order of predictors in the data and randomly sampling the predictors without 

replacement. Classification by Ensembles from Random Partitions enables the creation of an 

ensemble of ensembles which is illustrated in the CERP-GUIDE section. The proposed 

algorithm below will further illustrate how CERP works. 

Proposed Algorithm (CERP-GUIDE) 

Introduction to CERP-GUIDE 

 Classification-Tree CERP (C-T CERP) is Dr. Moon’s previous work which is an 

ensemble of ensembles. While CERP is a method for any classifier, C-T CERP was developed 

specifically for decision trees and forests. C-T CERP is an ensemble of forests where each forest 

contains CART decision trees with split criteria based on GINI impurity and 10-folds cross 

validation. Dr. Moon showed that as the value of positive correlation increases among the 

decision trees, the accuracy of the classifiers decreases (Moon, Ahn, Kodell, et al. 2007). 

Classification by Ensembles from Random Partitions (CERP) enabled the creation of decision 

trees that are less correlated compared to other methods such as bagging, boosting, and random 

subspace.  

 While C-T CERP addresses the problem of correlation among the decision trees in a 

forest, it may not need to address the selection bias problem when predictors are chosen to split 

due to the structure of the dataset. To extend the CERP idea to a general dataset having multiple 

types of features, we investigated an algorithm that uses GUIDE decision trees as classifiers in 

the ensemble and uses CERP for data partitions and forest ensembles. Proposed algorithm in 

thesis will be refer as CERP-GUIDE.  
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The CERP-GUIDE algorithm first uses CERP to randomize the predictors and then 

partitions the data set into disjoint subsets. The process of finding the optimal number of 

partitions will be explained later. From each data partition a GUIDE decision tree is created. This 

is just one forest. The CERP-GUIDE algorithm repeats this process to create multiple forests. 

The process of finding the optimal number of forests will be explained later. Classification is 

carried out by the use of majority voting among the forests. Note that the process of creating 

GUIDE trees does not employ random subspace, there is no bootstrapping of predictors at every 

split. What is done here is that the predictors are partitioned into disjoint subsets in CERP. 

The process of choosing optimal number of partitions (trees) is as follows: 

1. Shuffle the dataset predictor columns once. 

2. Let 𝑝 be the number of partitions. Let 𝑝 start at 3. 3 is chosen because that is the 

minimum number for an ensemble.  

3. Create GUIDE decision trees out of the partitions according to p, cross validate the 

forest, and record the performance confusion matrix. An example is 𝑝 = 3, means 

that that there are only three GUIDE decision trees created since there are three 

partitions. 

4. Increment 𝑝 by two and repeat step 3 to 4. The forest needs to be odd number in case 

of tie. Stop this process when 𝑝 is equal the number of predictors if odds else stop at 

the largest odd number that is just below the total number of predictors in the dataset. 

5. The optimal number of partitions,	𝑝, is the one with the best accuracy from cross 

validation using the training set. 
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FIGURE 5. CERP-GUIDE process of creating one forest with one shuffled training set. 

Once the optimal number of partitions is chosen, the process of finding the optimal 

number of  forests begins as follows: 

1. Let 𝑜𝑝 be the optimal number of partitions and 𝑓 be the current number of forests. 

2. The 𝑓 parameter starts from 1. 

3. Build the forest. The number of forests built is equal to	𝑓. The forest consists of 

GUIDE decision trees. The number of GUIDE decision trees in a forest is dictated by 

𝑜𝑝 (optimal number of partitions). 

4. Record performance of the model using the train set and record the results. 

5. Increment 𝑓 by 2 (we want odd numbers to break any tie voting) and repeat step 3 to 

step 5. The stop criterion is empirical, from previous works, the suggested is around 

19 forests. 
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FIGURE 6. CERP-GUIDE process of creating multiple forest with multiple shuffled 
training sets (one for each forest). 

Boosting 

Introduction to Boosting 

 Boosting is an alternative to bootstrapping predictors at every split. Boosting 

takes weak learning algorithms and adds weights to them to create strong learning algorithms. In 

the context of decision trees and forest learning algorithms, boosting adds weight to decision 
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trees according to their performance to increase the overall accuracy of the forest. Boosted trees 

are trees that have weight added by boosting method.  

A classic example of boosting is Adaboost, here the pseudocode is given from Richard A. 

Berk (Berk 2008. 259). 

1. Initialize the observation weights 𝑤! = 1 𝑁⁄ , 𝑖 = 1, 2, … , 𝑁. 

2. For 𝑚 = 1 to 𝑀: 

a. Fit a classifier 𝐺/(𝑥) to the training data using the weights 𝑤!. 

b. Compute: 𝑒𝑟𝑟/ =	∑ 1"	3(5"67#(&"))$
"%&

∑ 1"'
"%&

. 

c. Compute: 𝛼/ = 𝑙𝑜𝑔[(1 −	𝑒𝑟𝑟/) 𝑒𝑟𝑟/⁄ ]. 

d. Set 𝑤! ←	𝑤! ⋅ 𝑒𝑥𝑝P𝛼/ ⋅ 𝐼Q𝑦! ≠ 𝐺/(𝑥!)TU, 𝑖 = 1, 2, … , 𝑁. 

3. Output 𝐺(𝑥) = 𝑠𝑖𝑔𝑛	[∑ 𝛼/9
/#$ 𝐺/(𝑥!)]. 

 

Here 𝑁 represents the total number of observations or rows in the data. 𝑀 represents the 

number rounds of boosting. The 𝐼Q𝑦! ≠ 𝐺/(𝑥!)T function is an indicator function whether the 

classifier incorrectly predicted or not. If a classifier correctly predicts then the indicator function 

is 0 and if the classifier incorrectly predicts then the indicator function will set to 1. This means 

that the weight penalty will be added. The 𝑠𝑖𝑔𝑛 in the third step defines the binary class. If the 

output is larger than 0 then the class will be assigned to the first class and if the output is less 

than 0 then the class assignment will be the second class. 
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Extreme Gradient Boost (XGBoost) 

Introduction to XGBoost  

Before going into detail with XGBoost, we need to note that the Adaboost algorithm 

cannot be parallelized when building a forest, because the weight for the classifier is updated 

sequentially. This process is known as “boosting.” Random Forest and other forests that use the 

random subspace method for building trees require no knowledge of how the other decision trees 

are built. The decision trees can be built independently. For boosting methods such as Adaboost 

requires knowledge of which tree predicted incorrectly is required to add a weight. This make the 

process of building trees concurrently is impossible during the boosting phase. However, 

XGBoost may be parallelized so that XGBoost makes the process faster. In every round of 

boosting each decision trees may be tested via cross validation before weights are added to 

individual trees. What is different is how XGBoost calculates the weight and also it adds 

regularization to penalized complex model. The weights may be updated by training the loss and 

regularization functions. It may be stated as follows, for example: 

ℒ(𝜙) = ∑ 𝑙(𝑦Y! , 𝑦!)! 	+ 	∑ Ω(𝑓:):   

where Ω(𝑓) = 	𝛾𝑇 +	$
%
𝜆‖𝑤‖%  

The ℒ(𝜙) is called the regularized learning objective function. The regularization part is 

∑ Ω(𝑓:):  because it penalizes the complexity of the model. This regularization is for trees and is 

explained in “Learning nonlinear functions using regularized greedy forest” by T. Zhang and R. 

Johnson (Zhang and Johnson 2014).  The 𝑓: part represents an independent decision tree with 𝑘 

total number of decision trees.  The loss function is ∑ 𝑙(𝑦Y! , 𝑦!)! , it calculates the difference 
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between the predicted value of the model, 𝑦Y!, with the actual value 𝑦!. Using this equation 

XGBoost is based on additive training as follows: 

ℒ (;) = ∑ 𝑙 a𝑦! , 𝑦Y!
(;($) + 𝑓;(𝑥!)b,

!#$ + Ω(𝑓:)  

The 𝑡 here represents the current boosting round. In boosting, the concept of round is where the 

algorithm adds weight to each decision tree based on which ones predicted correctly and 

incorrectly. After training the decision trees in the forest, weights may be updated using cross 

validation. If there is another boosting round after that, the new forest with all the weights added 

to each decision tree in the previous round will be updated and this process will be repeated. 

 So ℒ (;) represents the regularized learning objective for the 𝑡-th boosting round.  Like 

previously stated we have the loss function ∑ 𝑙 a𝑦! , 𝑦Y!
(;($) + 𝑓;(𝑥!)b,

!#$  and the regularize 

penalty function Ω(𝑓:). One thing to notice is that XGboost added 𝑓;(𝑥!) to the predicted value 

𝑦Y!, this is the function that determines how much weight we need. Recall that 𝑦Y! is the predicted 

value from the forest containing all of the decision trees. The point of the weights is that we add 

to the predicted value so we can minimize the loss function. To put it another way, the algorithm 

is minimizing the distance or differences between the actual value and the predicted value by 

adding weight to the predicted value.  

Using the above equation, the XGBoost algorithm derives the weight for each terminal 

leaf for each decision tree and the algorithm also derives an equation for the optimal learning 

objective function. XGBoost does not exhaustively look for every possible combination of split 

but instead looks at a subset of combinations of split. The split algorithm instead looks at 

candidate splitting points based on percentiles of feature distribution. For more details, interested 
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readers are referred to “XGBoost: A scalable Tree Boosting System” by Tianqi Chen and Carlos 

Guestrin (Chen, Tianqi, and Guestrin 2016). One point to note is that at every split point 

XGBoost does not use random subspace method, which means there is no random sampling of 

predictors. Only the commercial version has the random subspace method available under the 

name TreeNet (www.salford-systems.com/products/treenet). XGBoost also employs several 

computer optimizations to run the algorithm faster but that is beyond the scope and focus of this 

paper. 
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CHAPTER 3  

DATA PROCESS 

Data Access 

There are two cancer data sets which were made accessible through BRB-ArrayTools 

Data Archive by the National Institutes of Health (NIH). The first is the prostate cancer data set 

which was made available for general study through the experiment design conducted in the 

“Molecular alterations in Primary prostate cancer after androgen ablation therapy” paper (Best, 

Gillespie, Yi, et al. 2005). This data set is available at 

https://brb.nci.nih.gov/data_archive/GDS1390-Project.zip. The prostate cancer data set has 

22,283 genes, 20 observations where 10 observations have androgen-dependent prostate cancer, 

and the other 10 observations having androgen-independent prostate cancer. The most common 

prostate cancer treatment is androgen ablation therapy. If the prostate cancer recurs after 

androgen ablation therapy, then this form of prostate cancer is labeled as “androgen-

independent” prostate cancer. Prostate cancer that does not recur after androgen ablation therapy 

is labeled as “androgen-dependent” prostate cancer. 

The second data set is myeloma cancer which was made available for general study 

through the experiment design conducted in “The Role of the Wnt-Signaling Antagonist DKK1 

in the Development of Osteolytic Lesions in Multiple Myeloma” paper (Tian, Zhan, Walker, et 

al. 2003). This data set is available at https://brb.nci.nih.gov/data_archive/GDS531-Project.zip. 

The myeloma cancer data set has 12,625 genes, 173 observations. Of the 173 observations, 137 

observations classified as “with bone lytic lesion” and only 36 observations classified as 

“without bone lytic lesion”. Bone lytic lesion is a symptom and is the softening of the bone 
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caused by a variety of diseases. Myeloma cancer is one of the diseases that can cause bone lytic 

lesion. The high level of dickkopf1 (DKK1) gene with myeloma cancer indicates that the patient 

most likely has bone lytic lesion problem.   

Visualization & Cleaning the Data 

All visualizations were done in R using the ggplot2 package (Wickham 2016). All 

cleaning was done in R using the data frame data structure. There were no missing data in the 

prostate cancer data set but there were three columns/features which contain missing values in 

the myeloma cancer data set. Using t-test those three columns with missing data were not 

significant so they were dropped. Both data sets were preprocessed using t-test between the 

response and the features to reduce the number of columns/features using 0.05 significant level. 

The prostate cancer dataset had the number of features reduced from 22,283 to 1,932. The 

myeloma cancer data set had the number of features reduced from 12,625 to 1,660.  
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CHAPTER 4  

METHODS 

Training Set and Test Set Data 

For Prostate data, the data is balanced with 20 observations, with 10 of those observations 

labeled as “androgen-dependent” and the other 10 observations labeled as “androgen-

independent”. The data was split into train set and test set, where 14 observations were set aside 

for the train set and 6 observations set aside for the test set. Of the 14 observations in the train 

set, 7 observations were labeled as “androgen-dependent” and 7 other observations labeled as 

“androgen-independent”. Of the 6 observations in the test set, there were 3 observations labeled 

as “androgen-dependent” and 3 other observations labeled as “androgen-independent”.  

 For myeloma data, the data is unbalanced. Of the 173 observations there are 137 

observations classified as “with bone lytic lesion” and only 36 observations classified as 

“without bone lytic lesion”. The original data was split into a train set and a test set. The train set 

have 40 observations; 20 of those observations are labeled with “with bone lytic lesion” and the 

other 20 observations labeled “without bone lytic lesion”. The reason why the train dataset is 

small compared to the test set is that the smallest class, “without bone lytic lesion”, have 36 

observations. It was decided that 20 of those observations will be part of the training set and 

another 20 observations with the class “with bone lytic lesion” will be part of the training set. 

With this decision there is an equal chance of detecting each class. The test set has 133 

observations. Of the 133 observations in the test set, there are 117 classified as “with bone lytic 

lesion” and 16 observations classified as “without bone lytic lesion”.   
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GUIDE Decision Tree 

 There were no parameters of interest for the GUIDE decision tree. The GUIDE decision 

tree is a single tree so there is no need to find the optimal number of trees in a forest. A single 

decision tree does not have the problem of correlations among predictors since there is only one 

predictor, the single decision tree. This means no algorithms are required to reduce correlations 

among the predictors so random subspace or CERP were not needed. The GUIDE decision tree 

was built using the train set and the performance was based on the test set. The GUIDE software 

used was provided by the creator of the GUIDE decision tree Dr. Loh (Loh 2009). The results for 

the prostate cancer dataset using the GUIDE decision tree was an accuracy of 0.6667, with 

sensitivity of 0.6667, specificity of 0.6667, positive predictive value of 0.6667, and a negative 

predictive value of 0.6667. The results for the myeloma cancer dataset using the GUIDE decision 

tree was an accuracy of 0.3308, with sensitivity of 0.2479, specificity of 0.9375, positive 

predictive value of 0.9667, and a negative predictive value of 0.1456.   

TABLE 1. The Prostate Cancer Confusion Matrix Test Results for the CERP Model 

Prostate Cancer D (Reference) I (Reference) 
D (Prediction) 2 1 
I (Prediction) 1 2 

 

TABLE 2. The Multiple Myeloma Cancer Confusion Matrix Test Results for the CERP 
Model 

Myeloma Cancer W (Reference) WO (Reference) 
W (Prediction) 29 1 

WO (Prediction) 88 15 
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CERP-GUIDE Forest Ensemble 

 The parameters of interest in our proposed forest ensemble model are the number of 

partitions, which indictates the number of decision trees, and the other parameter of interest is 

the number of forests. Since there are two parameters of interest, the process of building the 

CERP-GUIDE ensemble of forests is broken into two steps. The first step requires finding the 

optimal number of partitions for one CERP-GUIDE forest. The second step is to find the optimal 

number of forests in an ensemble. The second step is dependent on the first step because the 

forests built in the second step use the optimal number of partitions found in the first step. 

First Step – Finding the Optimal Number of Partitions for a CERP-GUIDE Forest 

  What is first needed to build the CERP-GUIDE ensemble of forests is finding the optimal 

number of partitions for one forest before creating an ensemble of forests. Before we can create 

an ensemble of forests, multiple forests, we need to figure how to best build one forest. For this 

thesis the best way to build a forest is by finding the best number of decision trees that a forest 

should have. Recall that the number of partitions determines the number of decision trees in a 

CERP-GUIDE forest, this means to build the best forest we need to find the optimal number of 

partitions for a forest. The optimal number of partitions will dictate how best to build a forest.  

The process of finding the optimal number of partitions is brute force. This process builds 

a CERP-GUIDE forest for all possible odd partitions from a training set. All the forests built 

from this process will be tested individually against a train set and their performance will be 

recorded. The optimal partition number will be based on the forest that performs the best on the 

train set. An odd number of partitions is chosen to break ties if there is a tie between decision 

trees within a forest.  
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Since we need to determine the optimal number of partitions, we need to determine how 

many possible partitions a data set can have. What are the conditions that are imposed upon 

when building a CERP-GUIDE forest? The first one is to break ties: all CERP-GUIDE forests 

need to contain an odd number of GUIDE decision trees. The second condition is that the 

minimum number of decision trees to be consider a forest is 3 trees. The third condition is the 

maximum number of decision trees that a CERP-GUIDE forest can have.  

For many forest algorithms, the maximum number of decision trees a forest can have is 

not clear and is more empirical based. For the CERP-GUIDE forest, the CERP algorithm gives 

us a hard number of how many decision trees a CERP-GUIDE forest can have. Recall that CERP 

algorithm partitions a data set by predictors. This means that the maximum number of partitions 

for a dataset is equal to the number of predictors. Our third condition is the largest number of 

trees a forest can have is the largest odd number in the total number of predictors. To clarify, if 

the dataset has a total of 1986 predictors and the largest odd number of predictors is 1985, then 

the largest CERP-GUIDE forest will have 1985 decision trees.  

The set of all possible CERP-GUIDE forests can be created based on those three previous 

stated conditions in a forest containing three trees, a forest containing the largest odd number of 

total number of predictors, and all odd number between that. The first CERP-GUIDE forest to be 

built consists of three GUIDE decision trees, which means the dataset is partitioned into 3 

partitions. The next forest to be built is the next odd number of decision trees, a CERP-GUIDE 

forest consisting for 5 GUIDE decision trees, which means that the data set is partitioned into 5 

partitions. This process continue until the last forest is built.  
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The CERP algorithm requires the order of predictors to be randomized before partitioning 

but to find the optimal number of partitions, the same order has to be maintained. The reason 

why the order of predictors is shuffled before partitioning is to enable an ensemble of forests, 

which makes each forest within an ensemble different. If the predictors are not shuffled before 

every partition and before a forest is built, then every forest in an ensemble of forests will be the 

same and there would be no point of an ensemble.   

For the prostate cancer data, there are 1,932 predictors in the prostate cancer data set 

which means there are 966 ways of partitioning those 1,932 predictors into odd number of 

partitions. A partition number of one is an odd number and will be excluded since it is not a 

forest; there are only 965 ways to build a CERP-GUIDE forest for the prostate cancer data with 

the conditions of this thesis. The CERP-GUIDE forests were built for 965 different odd 

partitions and their performance measures were recorded for comparison. The best performance 

measure from the 965 CERP-GUIDE forests will determine the best optimal number of odd 

partitions. The optimum number of partitions for one forest using the prostate cancer data set is 7 

partitions, this means that the optimal forest is one with 7 decision trees with each tree having 

276 predictors. The optimal number of partitions is 7 with an accuracy of 1.000, with sensitivity 

of 1.0000, specificity of 1.0000, positive predictive value of 1.0000, and a negative predictive 

value of 1.0000. 

The same process of finding the optimal number of partitions for prostate cancer was 

used for the myeloma cancer data set. The myeloma cancer data set have 1660 predictors, so the 

maximum number of odd partitions is 1659, which means there are 830 ways of partitioning the 

myeloma data into odd partitions. A partition of one is considered an odd number of partition but 
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because of the condition set for building a CERP-GUIDE forest it is excluded. There is only 829 

ways of building CERP-GUIDE forests. The CERP-GUIDE forests were created from the 

myeloma train set and all were tested using the train set. The optimal number of partitions 

chosen was 9. Using 9 partitions as the optimal number of partitions for myeloma cancer gave 

accuracy of 1.0000 with sensitivity of 1.0000, specificity of 1.0000, positive predictive value of 

1.0000, and a negative predictive value of 1.0000. 

 

FIGURE 7. This graph shows a subset of the 965 CERP-GUIDE forests to find the optimal 
number of partitions for prostate cancer. Each point represents a forest, the x-axis shows 
the number of decision trees within that forest which also represent the number of 
partitions, and the y-axis represent the accuracy of that forest. 

The second step, after finding the optimal way to build a CERP-GUIDE forest, is to find 

the optimal way to build an ensemble of CERP-GUIDE forests. The optimal way to build an 

ensemble of CERP-GUIDE forests is to figure out the optimal number forests in an ensemble of 

CERP-GUIDE forests. The criteria for the optimal number of forests in an ensemble of forests 

will be based on the performance of a train set.  
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FIGURE 8. This graph shows all 829 CERP-GUIDE forests to find the optimal number of 
partitions for myeloma cancer. Each point represents a forest, the x-axis shows the number 
of decision trees within that forest which also represent the number of partitions, and the y-
axis represents the accuracy of that forest. 

 

FIGURE 9. This graph shows a subset of 829 CERP-GUIDE forests to find the optimal 
number of partitions for myeloma cancer. It emphasized on the forests around optimal 
number of partitions which is 9 partitions.  

Second Step – Finding the Optimal Number of Forests in an Ensemble of Forests 

The forests that are built in the ensemble of CERP-GUIDE forests uses the optimal way 

to build a forest in the first step. This means each forest within an ensemble of CERP-GUIDE 
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forests will be built using the same number of decision trees. This number of decision trees for a 

forest is the optimal number of decision trees found in step one. Before a forest is built for an 

ensemble of forests, the order of the predictors is shuffled and then partitioned based on the 

optimal number of partitions found in step one. 

What are the conditions imposed on when building an ensemble of CERP-GUIDE 

forests? The first condition is there should be an odd number of forests to break ties among the 

forests. The second condition is an ensemble of forests should have more than one forest but 

because of the first condition it cannot be two so the minimum number of forests an ensemble of 

forests can have for our case is three forests. Unlike step one, there is no hard limit on the 

maximum number of forests an ensemble of forests can have. The maximum number of forests 

that an ensemble of forests will have is empirically driven.  

The ensemble of forests was built starting from three forests using the training set data 

and the result of the training set was recorded. The next odd number of forests is three, keeping 

the same forest, two more forests were added to make three forests within an ensemble of forests. 

The results from the test set were recorded. This process continued, keeping the last three forests, 

two more forests were added to the ensemble of forests, and the test set results were recorded. 

The maximum amount of forests for an ensemble of forests was decided based on Dr. Moon’s 

previous works which is around fifteen forests within an ensemble of forests (Moon, Ahn, 

Kodell, et al. 2007). 

For both data sets, prostate cancer and myeloma cancer, there were no advantages in the 

ensemble of forests. With prostate cancer, regardless of the number of forests in the ensemble of 

forests, it all had subpar accuracy performances compared to just one CERP-GUIDE forest. For 
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myeloma cancer, the ensemble of forests does as good as just one CERP-GUIDE forest in 

accuracy performance.  

 

FIGURE 10. This graph shows 19 trained ensembles of CERP-GUIDE forests to find the 
optimal number of forests for prostate cancer. Each point represents an ensemble of 
forests, the x-axis shows the number of forests within that ensemble, and the y-axis 
represents the accuracy of that ensemble of forests. 

With the optimal number of partitions found and the optimal number of ensembles found, 

we now test the models against the test data. For the prostate data set, with optimal number of 

partitions of 7 and optimal number of ensembles of 1, the performance using the test data is an 

accuracy of 0.8333 with sensitivity of 1.0000, specificity of 0.6667, positive predictive value of 

0.7500, and a negative predictive value of 1.0000. For the myeloma data, set with optimal 

number of partitions of 9 and optimal number of ensembles of 1, the performance using the test 

data is an accuracy of 0.7519 with sensitivity of 0.7863, specificity of 0.5000, positive predictive 

value of 0.9200, and a negative predictive value of 0.2424. 
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FIGURE 11. This graph shows 19 trained ensembles of CERP-GUIDE forests to find the 
optimal number of forests for myeloma cancer. Each point represents an ensemble of 
forests, the x-axis shows the number of forests within that ensemble, and the y-axis 
represents the accuracy of that ensemble of forests. 

TABLE 3. The Prostate Cancer Confusion Matrix Test Results for the CERP-GUIDE 
Model 

Prostate Cancer D (Reference) I (Reference) 
D (Prediction) 3 1 
I (Prediction) 0 2 

 

TABLE 4. The Multiple Myeloma Cancer Confusion Matrix Test Results for the CERP-
GUIDE Model 

Myeloma Cancer W (Reference) WO (Reference) 
W (Prediction) 92 8 

WO (Prediction) 25 8 
 

CART Decision Tree 

 There were no parameters of interest in the CART decision tree. The reasons were the 

same as for the GUIDE decision tree, it is a single predictor so there was no need to be 

concerned with correlations among predictors, like in algorithm that are an ensemble of 
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predictors. The package used for creating the CART decision tree is an R package named rpart 

(Therneau and Atkinson 2018). The results for the prostate cancer dataset using CART decision 

tree was an accuracy of 0.5000, with sensitivity of 0.5000, specificity of 0.5000, positive 

predictive value of 0.5000, and a negative predictive value of 0.5000. The results for the 

myeloma cancer dataset using CART decision tree was an accuracy of 0.3308, with sensitivity of 

0.2479, specificity of 0.9375, positive predictive value of 0.9667, and a negative predictive value 

of 0.1456.   

TABLE 5. The Prostate Cancer Confusion Matrix Test Results for the CART Model 

Prostate Cancer D (Reference) I (Reference) 
D (Prediction) 3 3 
I (Prediction) 0 0 

 

TABLE 6. The Multiple Myeloma Cancer Confusion Matrix Test Results for the CART 
Model 

Myeloma Cancer W (Reference) WO (Reference) 
W (Prediction) 29 1 

WO (Prediction) 88 15 
 

Random Forest 

 The parameter of interest in Random Forest is the number of decision trees in the 

Random Forest. The R package “randomForest” was chosen to build the Random Forest models.  

All other options are left as default, as a side note, the default number of decision trees for the R 

package is 500 decision trees (Liaw and Wiener 2002). Since the default for the package is 500 

decision trees, it was decided to build Random Forests containing from 3 decision trees to 1000 

decision trees and all odd number of trees in between.  
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 Since there is only one parameter of interest in Random Forest, the number of decision 

trees within a forest, this means there is only one step in finding the best Random Forest. We just 

need to find the best number of decision trees for one Random Forest. What are the conditions 

imposed on building a Random Forest? The first condition is a Random Forest can only contain 

an odd number of decision trees because we do not want any ties between decision trees within 

the forest. The second is the minimum number of decision trees a Random Forest can have. A 

forest, at minimum, has more than one decision trees but because of the first condition, the 

minimum number of decision trees will be three instead of two. With the proposed algorithm 

CERP-GUIDE ensemble of forests, there is a maximum number of decision trees a forest can 

have because of the CERP algorithm. In contrast, Random Forest does not have a maximum 

number of decision trees in a Random Forest, it is empirically driven.  

For the prostate cancer data, 2500 forests were trained from the training set containing 3 

decision trees to 4999 decision trees. From those 2500 trained Random Forests, the best forest 

was chosen based on the train set performance.  The best Random Forest contained three 

decision trees. The optimal Random Forest test set performance is an accuracy of 0.6667 with 

three decision trees, sensitivity of 1.0000, specificity of 0.3333, positive predictive value of 

0.6000, and a negative predictive value of 1.0000.  

For the myeloma cancer, 1000 Random Forests were built starting from 3 trained 

Random Forest with one decision trees, all the way up to one Random Forest with 1999 decision 

trees. Only odd numbers of decision trees were chosen in case of a tie among the decision trees 

within the Random Forest. All Random Forests were built using the myeloma cancer training 

data set, and the performance recorded was based on the train set. The best Random Forest was 
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the one that had the best predictive accuracy using the train set. The best Random Forest had 

three decision trees with the best accuracy of 0.2782, with sensitivity of 0.1795, specificity of 

1.0000, positive predictive value of 1.0000, and a negative predictive value of 0.1429. 

 

FIGURE 12. This graph only shows 9 trained Random Forests to find the optimal number 
of trees in a Random Forest for prostate cancer. Each point represents one Random Forest, 
the x-axis shows the number of trees within that Random Forest, and the y-axis represents 
the accuracy of that Random Forest.  

 

FIGURE 13. This graph only shows 14 trained Random Forests out of 2499 Random 
Forests to find the optimal number of trees in a Random Forest for myeloma cancer. Each 
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point represents one Random Forest, the x-axis shows the number of trees within that 
Random Forest, and the y-axis represents the accuracy of that Random Forest.  

TABLE 7. The Prostate Cancer Confusion Matrix Test Results for the Random Forest 
Model 

Prostate Cancer D (Reference) I (Reference) 
D (Prediction) 3 2 
I (Prediction) 0 1 

TABLE 8. The Multiple Myeloma Cancer Confusion Matrix Test Results for the Random 
Forest Model 

Myeloma Cancer W (Reference) WO (Reference) 
W (Prediction) 21 0 

WO (Prediction) 96 16 

XGBoost 

 The parameter of interest in XGBoost is the number of boosting rounds while everything 

else was left at the default. The “xgboost” package in R was used (Tianqi Chen, Tong He, 

Michael Benesty et al. 2019). It was decided to train twenty models from one to twenty boosting 

rounds; afterwards, the best performing model was pick from those twenty models. There is no 

hard number when to stop boosting, rather it is more empirically driven when to stop.  

For the prostate cancer data, twenty different XGboost models were created based on the 

training set. The best XGboost model chosen was based on the best performing one using the 

prostate train set. The best XGboost model was one with one round of boosting having the best 

accuracy of 0.6667 with one rounds of boosting, with sensitivity of 1.0000, specificity of 0.3333, 

positive predictive value of 0.6000, and a negative predictive value of 1.0000.  

For the myeloma cancer, twenty XGboost models were created with the first model 

having one boosting round and the last XGboost model had twenty boosting rounds. All 

XGboost models were trained using the myeloma cancer training set and performance was based 
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on the myeloma cancer test set. The best XGboost model was the one with four rounds of 

boosting with the best accuracy of 0.3383, sensitivity of 0.2650, specificity of 0.8750, positive 

predictive value of 0.9394, and a negative predictive value of 0.1400. 

 

FIGURE 14. This graph shows all 20 trained XGboost forests. This is to find the optimal 
number of boosting rounds in a XGboost forest for prostate cancer. Each point represents 
one XGboost forest, the x-axis shows the number of boosting rounds within that XGboost 
forest, and the y-axis represents the accuracy of that XGboost forest.  

 
FIGURE 15. This graph shows all 20 trained XGboost forests. This is to find the optimal 
number of boosting rounds in a XGboost forest for myeloma cancer. Each point represents 
one XGboost forest, the x-axis shows the number of boosting rounds within that XGboost 
forest, and the y-axis represents the accuracy of that XGboost forest.  
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TABLE 9. The Prostate Cancer Confusion Matrix Test Results for the XGboost Model 

Prostate Cancer D (Reference) I (Reference) 
D (Prediction) 3 2 
I (Prediction) 0 1 

TABLE 10. The Multiple Myeloma Cancer Confusion Matrix Test Results for the XGboost 
Model 

Myeloma Cancer W (Reference) WO (Reference) 
W (Prediction) 31 2 

WO (Prediction) 86 14 
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CHAPTER 5  

COMPARISON  

GUIDE Decision Tree vs. CERP-GUIDE Forest 

 The GUIDE decision tree does much worse than CERP-GUIDE forest for both cancer 

datasets. For prostate cancer, GUIDE decision tree has an accuracy of 0.6667 compared to 

CERP-GUIDE forest best accuracy of 0.8333. For myeloma cancer, GUIDE decision tree has an 

accuracy of 0.3308 compared to CERP-GUIDE forest’s accuracy of 0.7519. 

CERP-GUIDE Forest vs. Random Forest 

The CERP-GUIDE forest does better than Random Forest in accuracy.  For prostate 

cancer, CERP-GUIDE forest’s best accuracy is 0.8333 compared to Random Forest’s best 

accuracy of 0.6667. For the myeloma cancer data, CERP-GUIDE forest’s best accuracy is 

0.7519 compared to Random Forest’s best accuracy of 0.2782. The best CERP-GUIDE forests in 

both datasets have more decision trees compared to best Random Forests for the two datasets.  

TABLE 11. Highlighting the Total Number of Decision Trees in the Random Forest 
Compared to the CERP-GUIDE Forest Requires to Achieve Highest Accuracy for Prostate 
Cancer 

Number of Trees Random Forest’s Accuracy CERP-GUIDE Forest’s 
Accuracy 

3 1.0000 0.9286 
5 1.0000 0.9286 
7 1.0000 1.0000 

The advantages of CERP-GUIDE over Random Forest is that the GUIDE decision trees 

are free from selection bias (Loh 2010) and that the trees have a much lower correlation among 

compared to Random Forest. The GUIDE decision tree also looks at interactions to decide how a 

node within a decision tree splits. In contrast, Random Forest decision trees employ random 
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subspace to reduce correlation among the trees which is dependent on randomness. This implies 

that there is a chance that a tree within Random Forest may bootstrap the same set of predictors. 

The CERP algorithm is not susceptible to such problems, hence the decision trees in CERP-

GUIDE are more heterogenous and not as correlated as the decision trees in Random Forest. 

TABLE 12. Highlighting The Total Number of Decision Trees in the Random Forest 
Compared to the CERP-GUIDE Forest Requires to Achieve Highest Accuracy for 
Myeloma Cancer 

Number of Trees Random Forest’s Accuracy CERP-GUIDE Forest’s 
Accuracy 

3 0.8750 0.9250 
5 0.8250 0.9500 
7 0.7000 0.9500 
9 0.8250 1.0000 

 Another advantage of CERP-GUIDE is the CERP algorithm imposes the maximum 

number of decision trees a forest can have. With Random Forest, there is no maximum number 

of trees a forest can have. Recall that in a CERP-GUIDE forest the maximum number of decision 

trees is dictated by the number of partitions, the maximum number of partitions is when it is 

equal to the total number of predictors in the data set. In the CERP-GUIDE forest, you cannot 

partition past the total number of predictors available in a dataset, meaning there is a hard ceiling 

to the number of decision trees a CERP-GUIDE forest can have. An algorithm can exhaustively 

train all forests with all possible numbers of trees to find the best number trees in a forest.  

The third advantage is that the CERP algorithm is not constrained to one forest, it can be 

an ensemble of forests whereas Random Forest is generally used as one forest. Multiple Random 

Forests can be ensembled together, but Random Subspace and the bootstrapping of observations 

are more prone to correlation among the decision trees and forests compared to an ensemble of 

CERP-GUIDE forests (Loh 2010) (Moon, Ahn, Kodell, et al. 2007). Empirically, the advantage 
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of an ensemble of forests does not show up in any of the two data sets. None of the ensembles of 

CERP-GUIDE forests did better than a single CERP-GUIDE forest. 

CERP-GUIDE Forest vs. XGBoost 

For both cancer datasets, CERP-GUIDE does better than XGBoost. The XGBoost’s 

accuracy of 0.6667 for prostate cancer is the same as Random Forest’s accuracy and is worse 

than CERP-GUIDE’s accuracy of 0.8333. For the myeloma cancer data set XGBoost’s accuracy 

is 0.3383 which is just a bit better than Random Forest but worse than CERP-GUIDE’s accuracy 

of 0.7519. The number of trees in XGBoost is set at the default value of 100 decision trees 

compared to CERP-GUIDE decision trees.  

The CERP-GUIDE forest has several advantages compared to XGBoost. The first being 

that CERP-GUIDE forest is not a boosting algorithm so in theory the algorithm should be more 

interpretable. There is no real interpretation for the weights that are added to each tree that 

XGBoost employed. The XGBoost forest only interpretation is that the decision tree is this far 

away from correctly predicting. There are several papers on the theory of Random Forest, all of 

them have to restrain Random Forest’s greedy algorithm and bootstrapping for interpretation 

(Denil, Matheson, and Freitas 2014). For CERP-GUIDE there is no random element in the 

bootstrapping predictor at every split level which in theory would make it easier to interpret. The 

only random element would be the shuffling of predictors in the CERP algorithm part which is 

employed once. 

Another advantage of CERP-GUIDE forest is the parameter of interest of CERP-GUIDE 

is predictable, there is a limit on how many decision trees there are. The XGBoost’s parameter of 

interest is the number of boosting rounds which is arbitrary, there is no ceiling on when to stop. 
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A potential drawback is that XGBoost requires categorical response to be converted to 

continuous response. 

Final Results for Prostate Cancer 

TABLE 13. Summary of Accuracy, Sensitivity, and Specificity Performance Among the 
Different Tree-Based Algorithms for the Prostate Cancer Dataset 

Model Parameter Accuracy Sensitivity Specificity 
CERP-GUIDE Number of 

Partition 
(Number of 

Trees) 

0.8333 1.0000 0.6667 

Random Forest Number of Trees 0.6667 1.0000 0.3333 
XGBoost Number of 

Boosting 
Rounds 

0.6667 1.0000 0.3333 

GUIDE  0.6667 0.6667 0.6667 
CART  0.5000 0.5000 0.5000 

TABLE 14. Summary of Positive Predictive Values, Negative Predictive Values, and Area 
Under the Curve Performance Among the Different Tree-Based Algorithms for the 
Prostate Cancer Dataset 

Model Parameter PPV NPV AUC 
CERP-GUIDE Number of 

Partition 
(Number of 

Trees) 

0.7500 1.0000 0.8333 

Random Forest Number of Trees 0.6000 1.0000 0.6667 
XGBoost Number of 

Boosting 
Rounds 

0.6000 1.0000 0.6667 

GUIDE  0.6667 0.6667 0.6667 
CART  0.5000 0.5000 0.5000 
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Final Results for Myeloma Cancer 

TABLE 15. Summary of Accuracy, Sensitivity, and Specificity Performance Among the 
Different Tree-Based Algorithms for the Myeloma Cancer Dataset 

Model Parameter Accuracy Sensitivity Specificity 
CERP-GUIDE Number of 

Partition 
(Number of 

Trees) 

0.7519 0.7863 0.5000 

Random Forest Number of Trees 0.2782 0.1795 1.0000 
XGBoost Number of 

Boosting 
Rounds 

0.3383 0.2650 0.8750 

GUIDE  0.3308 0.2479 0.9375 
CART  0.3308 0.2479 0.9375 

TABLE 16. Summary of Positive Predictive Values, Negative Predictive Values, and Area 
Under the Curve Performance Among the Different Tree-Based Algorithms for the 
Myeloma Cancer Dataset 

Model Parameter PPV NPV AUC 
CERP-GUIDE Number of 

Partition 
(Number of 

Trees) 

0.9200 0.2424 0.7519 

Random Forest Number of Trees 1.0000 0.1429 0.2782 
XGBoost Number of 

Boosting 
Rounds 

0.9394 0.1400 0.3383 

GUIDE  0.9667 0.1456 0.3308 
CART  0.9667 0.1456 0.3308 
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Chapter 6 

CONCLUSION 

 Empirically, the CERP-GUIDE forest seems to work well for high-dimensional data. It is 

a compelling choice since it does not have selection bias when creating decision tree. The trees 

within the CERP-GUIDE forest are less correlated among each other compared to other tree-

based algorithms. For future work, the proposed algorithm can adapt a faster prune algorithm. 

The creators of XGboost have put in a lot of work to optimize for faster run times. The XGboost 

forest takes into account how the data are stored in computer memory and optimize for memory 

access speed to decrease the time it takes to train a XGboost model. It also takes into account 

CPU cache to further reduce the time it takes to train a XGboost model. For future work, perhaps 

CERP-GUIDE can adopt some of those techniques to reduce the time it takes to train a model. 

One thing that CERP-GUIDE cannot leverage that XGboost uses is tree regularization because it 

depends on additive model building which boosting can utilize. Additive model building in this 

context means that the trees in XGboost are added sequentially, where as CERP-GUIDE are 

creating the trees concurrently, all at once. Tree regularization fits well in the boosting model 

framework. 
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